Heat Transfer

Unit I Introduction and Heat Conduction

Heat Transfer by R P Kakde

Introduction and Heat Conduction

Code	Subject	Teachi Hrs	ing Sci s / wee	heme %k	ŀ	Examina	tion Scl	hem e		Total	Ст	redits
0040	Subject	Lecture	Tut	Pract	In- Sem	ESE	TW	PR	OR	Marks	Th	TW / PR / OR
302041	Design of Machine Elements-I	4	-	2	30@	7 0@	50	-		150	4	1
302042	Heat Transfer*	4	-	2	30	70		50	-	150	4	1
302043	Theory of Machines-II ^{\$}	3	1		30	70	25	-	25	150	3	1
302044	Turbo Machines	3	-	2	30	70	-	-	25	125	3	1
302045	Metrology and Quality Control [§]	3	_	2	30	70	-	-	25	125	3	1
302046	Skill Development	_	-	2	-	-	25	25	-	50	-	1
	Total	17	1	10	150	350	100	75	75	750	17	6 23

Course Objectives:

- 1.Identify the important modes of heat transfer and their applications.
- 2.Formulate and apply the general three dimensional heat conduction equations.
- 3.Analyze the thermal systems with internal heat generation and lumped heat capacitance.
- 4.Understand the mechanism of convective heat transfer
- 5.Determine the radiative heat transfer between surfaces.
- 6.Describe the various two phase heat transfer phenomenon. Execute the effectiveness and rating of heat exchangers.

Course Outcomes:

- CO 1: Analyze the various modes of heat transfer and implement the basic heat conduction equations for steady one dimensional thermal system.
- CO 2: Implement the general heat conduction equation to thermal systems with and without internal heat generation and transient heat conduction.
- CO 3:Analyze the heat transfer rate in natural and forced convection and evaluate through experimentation investigation.
- CO 4:Interpret heat transfer by radiation between objects with simple geometries.
- CO 5: Analyze the heat transfer equipment and investigate the performance.

Syllabus: UNIT 1: (10 hrs)

• Introduction and Basic Concepts:

- Application areas of heat transfer, Modes and Laws of heat transfer, Three dimensional heat conduction equation in Cartesian coordinates and its simplified equations, thermal conductivity, Thermal diffusivity, Thermal contact Resistance Boundary and initial conditions: Temperature boundary condition, heat flux boundary condition, convection boundary condition, radiation boundary condition.
- One dimensional steady state heat conduction without heat generation:
 - Heat conduction in plane wall, composite slab, composite cylinder, composite sphere, electrical analogy, concept of thermal resistance and conductance, three dimensional heat conduction equations in cylindrical and spherical coordinates (no derivation) and its reduction to one dimensional form, critical radius of insulation for cylinders and spheres, economic thickness of insulation

Prerequisites

Thermodynamics, Fluid Mechanics

References

Incropera FP and Dewitt DP, Fundamentals of Heat and Mass

Transfer, Fifth edition, John Wiley and Sons, 2010. Cengel YA, *Heat and Mass Transfer - A Practical Approach*,

Third edition, McGraw-Hill, 2010. Holman JP, *Heat Transfer*, McGraw-Hill, 1997.

Introduction and Heat Conduction

Introduction:

- What, How, and Where? Thermodynamics and Heat transfer Application Physical mechanism of heat transfer
 Conduction:
- Introduction 1D, steady-state 2D, steady-state Transient

Convection:

 Introduction External and internal flows Free convection Boiling and condensation Heat exchangers

Radiation:

• Introduction View factors

Fourier's Law of Heat Conduction

Rate of heat transfer by conduction (through a solid) in a given direction is proportional to the area normal to the direction of heat flow and the temp gradient in that direction. Mathematically;

 $Q \propto A \frac{\Delta T}{\Delta r} Watt$

$$Q = -kA\frac{dT}{dx}Watt(J/s)$$

Introduction and Heat Conduction

 T_2

 $X_2 \longrightarrow X$

Conduction $Q = -kA\frac{dT}{dx}$ $Q = kA \frac{(T_1 - T_2)}{(x_1 - x_2)}$ $Q = -kA\frac{(T_1 - T_2)}{(x_2 - x_1)}$ $Q = kA \frac{\Delta T}{\Delta x}$

Assumptions of Fourier's Law

- 1. Unidirectional heat flow (only one direction)
- 2. Steady state heat flow
- 3. Constant temp gradient
- 4. Constant conductivity, k
- 5. Both faces isothermal

Variation of Thermal Conductivity

- 1. It is the property of material; defined as ability of material to conduct heat through it.
- 2. Thermal conductivity in decreasing order : Metals » Non-metallic Solids » Liquids » Gases
- 3. Higher conductivity in metals due to free electrons in their outer orbits
- 4. k depends on grain structure. When k is different in different directions (k_x , k_y , k_z), material is known as anisotropic. When k is constant in all directions, it is called Isotropic.
- 5. k is strongly dependent on temp; $k=k_0(1+aT)$ Heat Transfer by R P Kakde

Convection

 $Q = hA(T_s - T_{\infty});$ Watt

Heat Radiation

All bodies continuously emit energy if their temp is above zero absolute (OK) and energy thus emitted is called thermal radiation.

Thermal radiations are electromagnetic waves and do not require any medium for propagation.

Thermal radiation is a surface phenomenon.

Theories of Thermal Radiation

- Wave/Maxwell's Classical Theory : Propagation by electromagnetic waves
- Quantum/ Planck's Theory: Propagation by quanta possessing certain amount of energy

Stefan Boltzmann's Law of Radiation

Thermal radiation emitted by a black body is proportional to the Fourth Power of its absolute temp.

Mathematically; $q \propto T^4 \quad W/m^2$; $Q = \sigma A T^4 \quad W$; where σ is Stefan Boltzmann's constant (5.67 x 10⁻⁸

W/m²K⁴)

$$\mathbf{Q} = \mathbf{A}_1 \mathbf{\varepsilon}_1 \boldsymbol{\sigma} \left(\mathbf{T}_1^4 - \mathbf{T}_2^4 \right)$$

Examples of Composite Structures

- Walls of buildings
- Walls of home refrigerators
- Insulated pipe carrying steam
- Walls of a furnace
- Walls of a cold storage
- Hot case for food

Introduction and Heat Conduction

D

g

dx

A(x,y,z)

С

 Q_x

Similarly, heat leaving,

 $dQ_{x+\delta x} = dQ_x + \partial/\partial x (dQ_x) \delta x$

Heat Transfer by R P Kakde

dy

Н

dz

 \mathbf{A}_{x+dx}

Х

G

F

So, net heat flow into the element in xdirection/time;

$$dQ_{x} - dQ_{x+dx} = -\frac{\partial}{\partial x} (dQ_{x}) \delta x$$
$$= -\frac{\partial}{\partial x} \left(-k_{x} \delta y \delta z \cdot \frac{\partial T}{\partial x} \right) \delta x$$

$$= \frac{\partial}{\partial x} \left(k_x \frac{\partial T}{\partial x} \right) \delta x \, \delta y \, \delta z$$

Qin gen Qour

GCOEARA Awasari Khurd

Thus, net heat flow in to the element from all directions by conduction in certain time δt will be:

$$\left[\frac{\partial}{\partial x}\left(k_{x}\frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y}\left(k_{y}\frac{\partial T}{\partial y}\right) + \frac{\partial}{\partial z}\left(k_{z}\frac{\partial T}{\partial z}\right)\right]\delta x \delta y \delta z \delta t$$

Now, internal heat generation in time $\delta t = g.\delta x \delta y \delta z \delta t$

Heat gain by the element from above, will result in energy storage and will increase its temp.

Let δT be the rise in temp in time δt , the net heat storage in the element in time δt ;

$$(mC_p \Delta T) = \rho VC_p \delta T$$
$$= \rho C_p \delta T \delta x \delta y \delta z$$

Energy Balance Equation:

Net heat conducted in to the element from all Directions +Heat generated within the element = Energy stored in the element

$$\begin{bmatrix} \frac{\partial}{\partial x} \left(k_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k_z \frac{\partial T}{\partial z} \right) \end{bmatrix} \delta x \, \delta y \, \delta z \, \delta t \\ + g \cdot \delta x \, \delta y \, \delta z \cdot \delta t \quad = \quad \rho C_p \, \delta T \cdot \delta x \, \delta y \, \delta z$$

Dividing the Equation by δxδyδzδt, we get;

Introduction and Heat Conduction

 $\left[k_{x}\frac{\partial T}{\partial x}\right] + \frac{\partial}{\partial y}\left(k_{y}\frac{\partial T}{\partial y}\right) + \frac{\partial}{\partial z}\left(k_{z}\frac{\partial T}{\partial z}\right) + g = \rho C_{p}$ volume independent For isotropic material, $k_x = k_y = k_z = k$ constant $\partial^2 T$ ∂T lovic 8 ∂z^2 ∂x^2 k X $\frac{k}{m^2}$ / s \cdots Where α is thermal diffusivity = pC p diffused Heat is getting

Heat Transfer by R P Kakde

Introduction and Heat Conduction

Fourier's Equation:

Poisson's Equation:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{g}{k} = 0$$

Laplace Equation:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0$$

Steady State, One Dimensional Equation w/o g:

$$\frac{d^2T}{dx^2} = o$$

Introduction and Heat Conduction

Introduction and Heat Conduction

Heat Transfer by R P Kakde

Introduction and Heat Conduction

Poisions egn

General Heat Conduction Equation In Spherical Coordinates

Similarly, by substituting $x=r.sin\theta.cos\Phi$; $y=r.sin\thetasin\Phi$ and $z=r.sin\theta$, we get heat conduction equation in **Spherical Coordinates:** Q-dir Q-dirn v dir $_{2} \partial T$ ∂T $\sin\theta$ $\chi^2 \sin^2 \theta \partial \phi$ $r^2 \sin \theta \, \partial \theta$ dr $\partial \theta$ ∂r $\alpha \ \partial t$ k For material with k = const t*isotropic*

1 D Laplace N D conduction with steady Laplace of Slate

Introduction and Heat Conduction

Poisson's Equation:

 $\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dT}{dr}\right) + \frac{g}{k} = 0$

Radial heat conduction w/o g:

$$\frac{1}{r^2} \frac{d}{dr} \left(\frac{r^2}{r^2} \frac{dT}{dr} \right) = 0$$

$$\frac{BVP}{LBVP} = BC's \implies r = t_1 \quad T = T_1$$

$$\int IBVP = C's = time \qquad r_2 \quad T = T_2$$

$$GCOEARA Awasari Khu$$

Insulating Materials

- Materials which are used to reduce the heat transfer rate from / to the system, are known as INSULATOTRS
 Examples are glass wool, plastics, wood, brick, cement,
- asbestos, rubber, grass, saw dust, cork, glass, clay, etc
- Insulators have low conductivity (generally k <2 W/mK)
- Insulating materials should be cheaper, able to withstand higher temp and humidity, should remain in applied shape and have long life, odorless, non-reactive,
- Practical applications are in refrigerators & air conditioners, buildings, conduits carrying high temp fluids like steam/ chemicals, plastic handles of kitchen utensils, furnaces, cold storages, offices etc

Conductivities of some Insulating Materials

Materials	Conductivity k (W/mK)
Wood	1.2 - 0.8
Brick	0.9 - 1.3
Concrete	0.8 - 0.9
Glass	0.7 - 0.8
Asbestos	0.2 - 0.4
Glass fiber	0.04
Cork	0.03
Plastics	0.9 - 0.04
Air	0.02
Clay	1.02
Gypsum	0.3
Saw Dust	0.07

"The critical radius of insulation is $r_{cr} = k/h$ for the cylinder and $r_{cr} = 2k/h$ for the sphere. Heat Transfer by R P Kakde

Electrical Analogy

	Electrical Energy	Heat Energy	
What flows?	Electrons	Heat energy through electrons	$t_1 - \tau_2$ $k_1 \tau_2$
Driving Potential	Voltage Diff, ∆V	Temp Diff, ΔT	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
Flow	Current, I	Heat Transfer Rate, Q	$\Delta \times$
Resistance to flow	ρ, Α, L of conductor	R, Thermal Resistance	$\frac{1}{E} = \frac{1}{E} = \frac{1}$

GCOEARA Awasari Khurd

Heat Transfer by R P Kakde

Introduction and Heat Conduction

Introduction and Heat Conduction

Heat Transfer In Composite Structures

Resistance In Series

$$Q = \Delta T/R$$

= (T₁ - T₂)/R₁
= (T₂ - T₃)/R₂
= (T₃ - T₄)/R₃

On adding up; $T_1 - T_4 = Q(R_1 + R_2 + R_3)$ OR $Q = (T_1 - T_4)/(R_1 + R_2 + R_3)$

 $Q=\Delta T/R$; hence $R=R_1+R_2+R_3$

Unit I Heat Transfer In Composite Structures

7

Introduction and Heat Conduction

Introduction and Heat Conduction

Introduction and Heat Conduction

Heat Transfer by R P Kakde

Unsteady State Heat Transfer

- Whenever a heat transfer system is switched on/ started, it takes some time to attain steady value of heat transfer rate. Heat transfer rate under these conditions keeps varying with passage of time. This heat transfer system is said to be transferring heat under unsteady state / transient conditions. Here, temperature also keeps varying at various locations in the system with time. Hence, temp is a function of both location as well as time.
- Similar situation occurs when a heat transfer system is switched off / shut off, but in reverse direction
- Examples are starting/firing of a furnace, heating of a body, switching on a heater, starting of an engine, etc

Unit I Steady State Heat Transfer Introduction and Heat Conduction

- Whenever a heat transfer system is switched on/ started, it takes some time to stabilize the heat transfer rate when it becomes constant and does not change with time. This heat transfer system is said to be transferring heat under steady state conditions. Here, temperatures attain constant values at various locations in the system and do not vary with time. Hence, temp is a function of only location and not of time.
- Heat transfer rate is directly proportional to temp difference.
 Since temps attain constant values, temp difference also become constant hence heat transfer rate attains steady value
- This implies that whatever amount of heat energy is being received by the system, at same rate it is transferring out.
- This means that under steady state, system transfers / receives constant amount of heat energy per unit time Heat Transfer by R P Kakde

Introduction and Heat Conduction

Types of Problems In Heat Transfer

- 1. Plate/Slab/Wall
- 2. Tube/Pipe/Cylinder
- 3. Sphere

- To increase Heat Transfer Rate
- To decrease Heat Transfer Rate

= Kil

- Larger the value of a, faster shall be the heat diffusion through the material. = RMS
- Steady state heat conduction does not contain $a_{,}^{u_{n_{f}}}$ hence temp distr through material is determined by k only, where as in unsteady state heat conduction, temp distr is determined by a. (Both by k & ρC_p)

Example: Cooking steel utensils having copper bottom

Predo

One Dimensional Steady State Heat Conduction through Slab/Plane Wall

Consider a plane wall of thickness Δx of material having conductivity k with its faces maintained at temp T₁ & T₂

Steady state, one dimensional Heat conduction eqn will be:

Integrating this equation twice;

We have $\frac{dT}{dx} = C_1$(1) Slope of Temp Profile and $T = C_1 x + C_2$(2) Temp Profile

 d^2T

Heat Transfer by R P Kakde

Introduction and Heat Conduction

Heat Conduction through Slab/Plane Wall

Boundary Conditions:

- 1) At x=0; T=T₁
- 2) At $x=\Delta x$; $T=T_2$

Applying BC 1), we get $T_1=C_1.0+C_2$ Hence $C_2=T_1$

Applying BC 2), we get $T_2=C_1.\Delta x+C_2$ Or $T_2=C_1.\Delta x+T_1$

$$\Rightarrow C_1 = \frac{T_2 - T_1}{\Delta x}$$

Substituting
$$C_1$$
 and C_2 in Eqn..(2)
We get $T = \frac{T_2 - T_1}{\Delta x} \cdot x + T_1 \dots Temp$ Distribution

Heat Transfer by R P Kakde

Introduction and Heat Conduction

Heat Transfer by R P Kakde

One Dimensional (Radial) Steady State Heat Conduction through Hollow Cylinder

Consider a hollow cylinder of inner radius r_1 and outer r_2 of length L of a material having conductivity k.

Inner surface of cylinder is at temp T_1 and outer at T_2

Conduction Equation for one dimensional (radial) Heat flow (without g) will be:

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right) = 0$$

Introduction and Heat Conduction

One Dimensional Steady State Heat Conduction through Hollow Cylinder

Integrating Equation:

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right) = 0$$

We have
$$\int \frac{d}{dr} \left(r \frac{dT}{dr} \right) = 0$$

 $\Rightarrow r \frac{dT}{dr} = C_1 \quad or \left(\frac{dT}{dr} = \frac{C_1}{r} \dots (1) \right)$

Heat Transfer by R P Kakde

On further Integration; We have $T = C_1 \ln r + C_2$(2) GCOEARA Awasari Khurd

Introduction and Heat Conduction Unit I Heat Conduction through Hollow Cylinder **Boundary Conditions:** $T(r) = T_{2} - T_{1} \ln(r) + T_{1} - T_{2} - T_{1} \ln(r_{1})$ $I_{n}(r_{2}, r_{1}) - I_{n}(r_{2}, r_{1})$ Eqn (2) $T=C_1.lnr+C_2$ 1) At $r=r_1$; $T=T_1$ $T_2=C_1.lnr_2+C_2....(4)$ Subtracting eqn (4) from (3) and further substitution; (r) $C_{1} = \frac{T_{2} - T_{1}}{\ln \frac{r_{2}}{r_{2}}} \quad and \ C_{2} = T_{1} - \frac{T_{2} - T_{1}}{\ln \frac{r_{2}}{r_{2}}} . \ln r_{1}$ $T_1 > T_2$ T_2

Heat Transfer by R P Kakde

Introduction and Heat Conduction

Introduction and Heat Conduction

Heat Conduction through Hollow Cylinder Heat Flow Rate: $Q = -kA \frac{dT}{dr} \quad \frac{dT}{dr} = \frac{C_1}{r} \dots from Eqn...(1)$ Therefore, $Q = -k.2\pi rL$. $\frac{C_1}{r} = -2\pi kLC_1$

GCOEARA Awasari Khurd

Heat Transfer by R P Kakde

Introduction and Heat Conduction

Heat Transfer by R P Kakde

Logarithmic Mean Area (LMA)

To obtain value of LMA i, e. A_m ; We multiply & divide Q expression by $(r_2 - r_1)$ as; $Q = \frac{2\pi k L \Delta T}{\ln \frac{r_2}{r_1}} \cdot \frac{(r_2 - r_1)}{(r_2 - r_1)} = \frac{k \cdot 2\pi L(r_2 - r_1)}{\ln \frac{r_2}{r_1}} \cdot \frac{\Delta T}{(r_2 - r_1)}$

Comparing with
$$Q = k.A_m \cdot \frac{\Delta T}{r_2 - r_1};$$

We have $A_m = \frac{2\pi L(r_2 - r_1)}{\ln \frac{r_2}{r_1}} = \frac{A_o - A_i}{\ln \frac{A_o}{A_i}}$

Heat Transfer by R P Kakde

Introduction and Heat Conduction

One Dimensional (Radial) Steady State Heat Conduction through Hollow Sphere

Consider a hollow sphere of inner radius r_1 and outer r_2 of a material having conductivity k. Inner surface of sphere is at temp T_1 and outer at T_2

Conduction Equation for one dimensional (radial) Heat flow (without g) will be:

 $T_1 > T_2$

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dT}{dr} \right) = 0 \Rightarrow \frac{d}{dr} \left(r^2 \frac{dT}{dr} \right) = 0 \qquad no \quad 0 \qquad no \quad 0 \qquad no \quad 0 \qquad no \quad dT = 0$$

$$no \quad g \qquad no \quad 0 \qquad no \quad dT = 0$$

$$no \quad g \qquad no \quad 0 \qquad no \quad dT = 0$$

$$no \quad 0 \qquad steady$$

$$(no \quad grave iv \quad twice$$

One Dimensional (Radial) Steady State Heat Conduction through Hollow Sphere

Integrating Eqn...
$$\int \frac{d}{dr} \left(r^2 \frac{dT}{dr} \right) = 0$$

We have $r^2 \frac{dT}{dr} = C_1$ or $\frac{dT}{dr} = \frac{C_1}{r^2} \dots (1)$
 $\int \log r = r + q \eta$

 r_2 r_1 K T_1 K T_2 Q

 $T_{1}>T_{2}$

On furtherIntegration, we have

$$T = -\frac{C_1}{r} + C_2 \dots \dots (2) \qquad \text{Temp. variation with radius} \\ \bigcirc C'_S \implies \bigcirc r = r_1 \quad T = -7_1 \\ \bigcirc r = -7_2 \quad T = -7_2 \\ \text{Heat Transfer by R P Kakde} \end{cases}$$

Introduction and Heat Conduction

Substituting
$$C_1 \& C_2$$
 in Eqn $T = -\frac{C_1}{r} + C_2$
 $T = \frac{r_1}{r} \cdot \frac{r_2 - r}{r_2 - r_1} \cdot T_1 + \frac{r_2}{r} \cdot \frac{r - r_1}{r_2 - r_1} \cdot T_2$

This is the Temp Profile across the thickness of sphere

Introduction and Heat Conduction

Heat Flow Rate
$$Q = -kA\frac{dT}{dr} = -k.4\pi r^2 \cdot \frac{dT}{dr}$$

Substituting $\frac{dT}{dr} = \frac{C_1}{r} \Rightarrow Q = -k.4\pi r^2 \cdot \frac{C_1}{r^2} = -4\pi kC_1$
Substituting C_1 ;
 $Q = 4\pi k.r_2r_1 \cdot \frac{T_1 - T_2}{r_2 - r_1} = \frac{T_1 - T_2}{\frac{r_2 - r_1}{4\pi k.r_2r_1}}$
Therefore $R_{cond} = \frac{r_2 - r_1}{4\pi kr_2r_1}$ and $A_m = 4\pi r_1r_2$
Electrical Analogy

Heat Transfer by R P Kakde

Overall Heat Transfer Coefficiente duction and Heat Conduction

Heat Flow Rate can also be given as $Q=UA\Delta T$; where U is called as overall heat transfer coefficient

For plane wall:

$$Q = UA\Delta T = \frac{\Delta T}{\frac{1}{UA}} = \frac{\Delta T}{\frac{1}{h_1A} + \frac{\Delta x}{kA} + \frac{1}{h_2A}}$$
hence $\frac{1}{UA} = \frac{1}{h_1A} + \frac{\Delta x}{kA} + \frac{1}{h_2A}$
Therefore, $\frac{1}{U} = \frac{1}{h_1} + \frac{\Delta x}{k} + \frac{1}{h_2}$

••••where U is Overall Heat Transfer Coeff

Heat Transfer by R P Kakde

 T_{1} k h_{1} k h_{2} h_{2}

For Cylinder:

$$Q = U_{i}A_{i}(T_{i} - T_{o}) = U_{o}A_{o}(T_{i} - T_{o})$$

$$= \frac{\Delta T}{\frac{1}{U_{i}A_{i}}} = \frac{\Delta T}{\frac{1}{U_{o}A_{o}}} = \frac{\Delta T}{\frac{1}{h_{i}A_{i}}} + \frac{\frac{\ln r_{2}}{r_{1}}}{\frac{1}{h_{i}A_{i}}} + \frac{\frac{\ln r_{2}}{r_{1}}}{\frac{2\pi k_{1}L}{2\pi k_{2}L}} + \frac{\ln r_{2}}{\frac{2\pi k_{2}L}{2\pi k_{2}L}} + \frac{1}{h_{o}A_{o}}$$

$$\frac{1}{U_{i}A_{i}} = \frac{1}{U_{o}A_{o}} = \frac{1}{h_{i}A_{i}} + \frac{\frac{\ln r_{2}}{r_{1}}}{2\pi k_{1}L} + \frac{\ln r_{3}}{2\pi k_{2}L} + \frac{1}{h_{o}A_{o}}$$

 U_o A_o A_i r_1 r_2 r_3 r_4 r_5 r_6 r_7 r_6 r_7 r_6 r_7 r_6 r_6 r_6 r_7 r_6 r_7 r_7

where U_i is Overall heat transfer coeff based on inner surface area A_i and U_o is Overall heat transfer coeff based on outer surface area A_o $A_i = 2\pi r_1 L$ and $A_o = 2\pi r_3 L$ Heat Transfer by R P Kakde

For Sphere:

$$Q = U_i A_i \left(T_i - T_o \right) = U_o A_o \left(T_i - T_o \right)$$

$$= \frac{\Delta T}{\frac{1}{U_i A_i}} = \frac{\Delta T}{\frac{1}{U_o A_o}} = \frac{\Delta T}{\frac{1}{h_i A_i}} + \frac{r_2 - r_1}{4\pi k_1 r_2 r_1} + \frac{r_3 - r_2}{4\pi k_2 r_3 r_2} + \frac{1}{h_o A_o}$$
$$\frac{1}{U_i A_i} = \frac{1}{U_o A_o} = \frac{1}{h_i A_i} + \frac{r_2 - r_1}{4\pi k_1 r_2 r_1} + \frac{r_3 - r_2}{4\pi k_2 r_3 r_2} + \frac{1}{h_o A_o}$$

where U_i is Overall heat transfer coeff based on inner surface area A_i and U_o is Overall heat transfer coeff based on outer surface area A_o $A_i = 4\pi r_1^2$ and $A_o = 4\pi r_3^2$

Heat Transfer by R P Kakde

The Critical Radius of Insulation

- We know that by adding more insulation to a wall always decreases heat transfer.
- This is expected, since the heat transfer area A is constant, and adding insulation will always increase the thermal resistance of the wall without affecting the convection resistance. However, adding insulation to a cylindrical piece or a spherical shell, is a different matter.
- The additional insulation increases the conduction resistance of the insulation layer but it also decreases the convection resistance of the surface because of the increase in the outer surface area for convection. Therefore, the heat transfer from a pipe may increase or decrease, depending on which effect dominates.

Contraction of the second seco

Take the example of heat flow across a steel tube, carrying hot fluid, when a layer of insulation is applied to it as shown in Fig.

With increase in insulation radius $r_{3,}$ conductive resistance increases but convective resistance decreases, so we do not know whether Q will increase or decrease. Heat Transfer by R P Kakde

Introduction and Heat Conduction

GCOEARA Awasari Khurd

Heat Transfer by R P Kakde

Critical Radius of Insulation: Sphere

Now, take another example of heat flow across a sphere, having hot fluid, when a layer of insulation is applied to it as shown in Fig.

Hence;
$$Q = \frac{\Delta T}{\frac{r_3 - r_2}{4\pi k_i r_3 r_2} + \frac{1}{h4\pi {r_3}^2}}$$

Again, with increase in insulation thickness (r_3) , conductive resistance increases but convective resistance decreases, so we do not know whether Q will increase or decrease.

From Q expression, it is found that while conductive resistance increases with r_3 , convective resistance decreases.

It is seen from Q v/s r₃ plot that with increase in r_3 , Q first increases up to certain $r_3 = r_c$, and then starts decreasing.

Value of $r_{3,j}$ for which Q is max or in other words, total resistance is minimum, is called critical radius of insulation, denoted by r_c

Heat Transfer by R P Kakde

We have to find that value of r_2 , for which Q is maximum or total resistance is minimum.

To obtain maxima, we can either differentiate Q or resistance expression wrt r_2 and put it equal to zero. Thereforewecanwrite :

 $\frac{d}{dr_2} \left[\frac{\ln \frac{r_2}{r_1}}{2\pi kL} + \frac{1}{h2\pi r_2 L} \right] = 0$

Takingoutcommonwecanwrite:

GCOEARA Awasari Khurd

$$\frac{d}{dr_2} \left[\frac{\ln \frac{r_2}{r_1}}{k} + \frac{1}{hr_2} \right] = 0$$

Heat Transfer by R P Kakde

Introduction and Heat Conduction

On differentiation:
$$\frac{1}{k} \cdot \frac{1}{r_2} - \frac{1}{h} \cdot \frac{1}{r_2^2} = 0$$

hence
$$r_2 = \frac{k}{h} = r_c$$

This value
$$r_2 = r_c = \frac{k}{h}$$
 is called CRITICAL RADIUS of INSULATION
for CYLINDER

Heat Transfer by R P Kakde

Introduction and Heat Conduction

Similarly, it can be shown that critical radius of insulation for sphere is:

$$r_2 = r_c = 2k/h$$

Unit I Economic Thickness of Insulation

- Concept based on economics
- As thickness of insulation increases, heat loss decreases, hence production cost decreases .
- However, depreciation & maintenance called fixed operating cost, increases
- Therefore, net operating cost, which is production cost plus fixed operating cost, initially decreases and then increases. The radius (thickness), at which net operating cost is minimum, is known as Economic Radius (Thickness) of Insulation (r_e).

Introduction and Heat Conduction

Heat Transfer by R P Kakde

Heat Transfer by R P Kakde

Conduction in steady state anithmet Heatgen. 1D $\frac{d}{27}$ (asterian $\forall Q(w) q' \notin W_{mz}$ \rightarrow $T(\mathbf{x})$ 1 fr (rd-Cy(. = 0Sphenical Later (r2d7) r2tg dr 20 $T_{\omega_1} > T_1 > T_1$ 12> Tau2 Q = Qconv + Qcond + Qconv Heat Transfer by R P Kakde **GCOEARA** Awasari Khurd
Unit I

Introduction and Heat Conduction

Heat Transfer by R P Kakde

Unit I

Heat Transfer by R P Kakde

GCOEARA Awasari Khurd

Unit IVGJ

Heat Transfer by R P Kakde

GCOEARA Awasari Khurd